September 24, 2017 |
Researchers Extend Liver Preservation for Transplantation
July 2, 2014  | 

Bethesda, MD - Researchers have developed a new supercooling technique to increase the amount of time human organs could remain viable outside the body. This study was conducted in rats, and if it succeeds in humans, it would enable a world-wide allocation of donor organs, saving more lives.

The research is supported by National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK), both parts of the National Institutes of Health.

Current technology can preserve livers outside the body for a maximum of 24 hours using a combination of cold temperatures and a chemical solution developed by scientists at the University of Wisconsin-Madison in 1983. The solution helps keep the liver tissue from dying while in transit to the recipient site. This has helped increase the number of successful liver transplants — but extending even further the time a liver can survive outside the body would provide many benefits. It would allow for more time to prepare the patient and ease logistics at the donor hospital site, reduce the urgency of rushing the organ to its destination, and expand the donation area to allow for transcontinental and intercontinental transplantations — thus increasing the chances of patients finding better matches while simultaneously significantly reducing costs.

The difficulty with long-term preservation of human organs stems mostly from the extensive tissue damage that occurs when organs are cryopreserved, frozen at temperatures of -320.8 degrees Fahrenheit. While successful for single cells and simple tissues, the problem is exacerbated with whole organs because of the multiple cell types and other structures that react differently to cold. To combat these problems, Martin Yarmush, M.D., Ph.D., and Korkut Uygun, Ph.D., investigators in the Center for Engineering in Medicine at Massachusetts General Hospital (MGH), Boston, have developed a four-step preservation technique that has tripled the amount of time that rat livers can be stored before transplantation. Continue>

Page | 1 2 3 4
Suggested Articles