September 25, 2017 |
New Tool Puts Accurate DNA Analysis in Fast Lane
February 1, 2016  | 

Houston, TX – Rice University scientists have developed a tool to speed the design of molecular diagnostics that depend on the specific recognition of pathogen DNA and RNA.

The Rice lab of bioengineer David Zhang introduced a method that cuts the time required to analyze the thermal behaviors of DNA and RNA strands from months to hours. The open-access method described this week in Nature Communications will help scientists build a universal database of biophysical properties of genetic molecules.

Typically, to study the behavior of a particular DNA sequence – for example, one that is specific to a virus -- researchers would heat and cool the molecules to observe their fluorescence at different temperatures. This technique is known as a melting curve analysis. Using rules of thumb, researchers would then guess the DNA’s properties at temperatures other than the one measured. However, such approaches are inaccurate because the way a DNA molecule behaves at 75 degrees Celsius is a poor predictor of how it behaves at 37 C, Zhang said.

"Our goal is to build a database of good DNA and RNA thermodynamic parameters. Melt curves done in the '80s and '90s are too crude," he said. "Unfortunately, that's what people in diagnostic and life-sciences research use today because there's been no better method.

"Our main innovation is that we have developed a way to measure exact thermodynamics at the temperatures and other conditions we care about. We are studying DNA 'in the wild' rather than observing DNA molecules that have been locked up in an overheated cage." Continue>

Page | 1 2 3
Suggested Articles