November 23, 2017 |
Researchers Discover Two-Step Mechanism of Inner Ear Tip Link Regrowth
June 12, 2013  | 

Bethesda, MD - A team of NIH-supported researchers is the first to show, in mice, an unexpected two-step process that happens during the growth and regeneration of inner ear tip links, the extracellular tethers that link stereocilia. The discovery offers a possible mechanism for potential interventions that could preserve hearing in people whose hearing loss is caused by genetic disorders related to tip link dysfunction. The work was supported by the National Institute on Deafness and Other Communication Disorders (NIDCD), a component of the National Institutes of Health.

Stereocilia are bundles of bristly projections that extend from the tops of sensory cells, called hair cells, in the inner ear. Each stereocilia bundle is arranged in three neat rows that rise from lowest to highest like stair steps. Tip links are tiny thread-like strands that link the tip of a shorter stereocilium to the side of the taller one behind it. When sound vibrations enter the inner ear, the stereocilia, connected by the tip links, all lean to the same side and open special channels, called mechanotransduction channels. These pore-like openings allow potassium and calcium ions to enter the hair cell and kick off an electrical signal that eventually travels to the brain where it is interpreted as sound.

The findings build on a number of recent discoveries in laboratories at NIDCD and elsewhere that have carefully plotted the structure and function of tip links and the proteins that comprise them. Earlier studies had shown that tip links are made up of two proteins — cadherin-23 (CDH23) and protocadherin-15 (PCDH15) — that join to make the link, with PCDH15 at the bottom of the tip link at the site of the mechanotransduction channel, and CDH23 on the upper end. Scientists assumed that the assembly was static and stable once the two proteins bonded. Continue>

Page | 1 2 3 4
Suggested Articles